
 

 

       Bilkent University 

     Department of Computer Engineering 

Senior Design Project 
Project short-name: LodeStar 

Low Level Design Report 

Barış Poyraz, Berk Evren Abbasoğlu, Çelik Köseoğlu, Efe Ulaş Akay Seyitoğlu, Hüseyin Beyan 

Supervisor: Halil Bülent Özgüç 

Jury Members: Çiğdem Gündüz Demir and Uğur Güdükbay 

Progress Report 

Feb 12, 2018 

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the requirements of the Senior 

Design Project course CS491/1. 



Contents 

1. Introduction	 1

1.1. Design Trade-Offs	 2

1.1.1. Functionality vs Usability	 2

1.1.2. Security vs. Cost	 2

1.1.3. Space vs. Time	 3

1.1.4. Compatibility vs Extensibility	 3

1.2. Engineering Standards	 3

1.3. Use of New Tools and Technologies	 3

1.4. Life Long Learning	 4

1.5. Interface Documentation Guidelines	 4

2. Packages	 5

2.1. Client	 5

2.1.1. View	 6

2.1.2. Controller	 8

2.2. Server	 10

2.2.1. Logic Tier	 11

2.2.2. Data Tier	 13

3. Class Interfaces	 15

3.1. Client	 15

3.1.1. View	 15

3.1.2. Controller	 24

3.2. Server	 27

3.2.1. Logic Tier	 27

3.2.2. Data Tier	 33

4. Glossary	 37

5. References	 38



List of Figures 

I. Figure 1 - View Subsystem - Page 6 

II. Figure 2 - Controller Subsystem - Page 8 

III. Figure 3 - Logic Tier Subsystem - Page 11 

IV. Figure 4 - Data Tier Subsystem - Page 13 

LodeStar



Definitions, Acronyms and Abbreviations     

TCP: Transmission Control Protocol 

UDP: User Datagram Protocol 

VR: Virtual Reality 

API: Application Programming Interface 

HTTP: Hypertext Transfer Protocol 

SSL: Secure Sockets Layer     

UI: User Interface 

Client: User End of the Application. Generally installed by the user on the smartphone. 

Server: The part of the application which responds to Client’s requests. Responsible for data 

management and API interactions.  

Activity: In android an activity is a entry point for a user’s interaction with the application[1]. 

LodeStar



1. Introduction 

 In today’s world, what is the most valuable currency? American Dollars? Gold? Airline or 

credit card points? Even though they all offer value in their own ways, unarguably the most 

important currency for everyone is time. So, saving time should offer the greatest profit. Especially 

where people are forced to waste time due to unavoidable circumstances. One such 

circumstance is waiting at the airport, possibly for hours at a time. 

 Imagine booking a flight to a foreign country. The day of the exciting getaway comes 

knocking on the door. As the punctual person you are, you go to the airport hours before the 

departure time. You check-in, hand over your luggage, go through passport control and sit next to 

your gate, waiting for the flight. You check your watch, and then monitor the expected departure 

time of your flight. Which is two hours away... To make matters worse, it has also been delayed for 

another hour and a half. The thrill of the holiday hides behind the curtains of a dreaded airport 

wait. Sounds familiar?     

 LodeStar aims to help such passengers to utilize this otherwise wasted time efficiently. 

Thanks to the development of technology, it is now possible to obtain information about most 

countries. Favorite places to visit, must-see events, historic restaurants and so forth. While such 

information is already presented in many popular applications already, LodeStar diverges from 

such applications with one unique feature. With the help of Google Street View, LodeStar will 

offer users the 360° views of the airport they will be traveling to. Hours before reaching their 

destinations, the users will be able to see where they can buy a SIM card, rent a car, get on the 

train, or claim their luggage. LodeStar will show them how to go from the landing site to the 

mentioned places with directions, and the 360° pictures will etch the path into their minds. If the 

user possesses virtual reality glasses, these images will also be displayed in virtual reality for an 

immersive experience. 

 This report’s departure point is an overview of the low-level architecture and design of 

LodeStar. In the next section, the trade-offs of our design and engineering standards will be 

explained. What follows will be the documentation guidelines. After that, information about the 

packages and interfaces of LodeStar’s systems will be presented. Finally, the class diagrams and 

a detailed look into each of LodeStar’s software components will conclude the report. 

LodeStar !1



1.1. Design Trade-Offs 

 In software development, when choosing to enhance a certain feature of a program, 

usually another one has to be sacrificed. Almost all decisions with respect to design comes with 

certain trade-offs and and implications[2]. For this reason, we spent a lot of time identifying 

LodeStar’s trade-offs during the design process to create the most optimized system for the 

project’s needs. In the following sections, trade-offs we considered will be presented.   

1.1.1. Functionality vs Usability 

 Two of the most important aspects to consider about design trade-offs are LodeStar’s 

functionality and usability. Functionality refers to whether LodeStar’s functionalities are working 

as intended whereas the usability refers to the ease of use and intuitiveness of these presented 

functions[3]. Even if LodeStar offers top-notch functionalities and services, they will offer no value 

if the user cannot interact with them. For this reason, we spent a great amount of effort to make 

the user interface of LodeStar as intuitive and easy to use as possible. All the functions will be 

easily accessible by the user. Therefore, it is possible to say LodeStar’s design favors usability 

over functionality. 

1.1.2. Security vs. Cost 

 Security is of paramount importance for an application which guides people through 

international airports. We recognized that in the near past, many security issues resulted in global 

problems ranging from fraud to terrorism[4]. On top of sharing the pictures of some of the world’s 

most crowded airports, LodeStar also collects a lot of user data. This information is highly 

valuable and must be kept confidential at all costs. Therefore, LodeStar’s design favors security to 

cost. No amount of time, effort or money is too great if it can prevent unspeakable horrors. 

LodeStar !2



1.1.3. Space vs. Time 

 Efficiency is what all software programs strive to achieve, and this efficiency can be 

considered as in efficiency in space and efficiency in time[5]. LodeStar stores all data in the server 

side rather than within the application itself. This way, LodeStar will offer high speed within the 

application as the server will be carrying the bulk of the information. Since we consider server 

space to be cheaper than the valuable time of the user, LodeStar’s application side will operate at 

top speed. The extra space requirements of the server is a price we are willing to pay for a fluent 

user experience. 

1.1.4. Compatibility vs Extensibility 

 LodeStar will have iOS and Android versions. Therefore, it is important LodeStar is 

compatible with all these systems. Extensibility is also important as LodeStar will have to evolve 

with updates in the future. There may even be a web browser version of LodeStar Although the 

ability to extend the project is crucial, we feel creating an application compatible with multiple 

platforms is much more desired. 

1.2. Engineering Standards 

 For the descriptions of the class interfaces, diagrams, scenarios, use cases, subsystem 

compositions and hardware depictions, this report follows the UML guidelines[6]. UML is a 

commonly used way to generate these diagrams, easy to use and since it is the method taught at 

Bilkent University, we chose to utilize it in the following pages. For the citations, the report follows 

IEEE’s standards[7]. Again, this is a commonly used method and the one preferred in Bilkent 

University. 

1.3. Use of New Tools and Technologies 

Firebase: Firebase is a mobile and web application development platform. This platform offers 

users to rapidly develop applications that require user logins, basic databases, encryption 

facilities and media sharing services[8]. 

NodeJS: Allows rapid development and deployment for web micro-services. Allows the 

developer to save precious development time by providing many simple libraries for building 

applications[9]. 

LodeStar !3



Docker: Allows deployment of NodeJS applications with a simple click. Stores all program code in 

containers and automatically manages them across a wide variety of platforms. 

Google VR: Provides virtual reality rendering facilities for VR glasses[10]. 

Swift Lang: Swift is the programming language use to code applications for iOS. Swift is fast, safe 

and interactive and gives the ability to program for phones, desktops, servers and anything else 

that runs code[11]. Because LodeStar will have an iPhone application, it was necessary to use 

Swift for implementation. 

Unity: Game Engine. Allows game developers to build sophisticated games without getting 

involved into shader programming[12]. 

1.4. Life Long Learning 

 The users of LodeStar be subject to formal and informal learning opportunities throughout 

their lives. Using LodeStar while traveling across countries will help users to discover new places 

that they could’ve missed without the application. The Places to See page under Trip Page will 

provide the user with plentiful exploration options. 

 As the developers of LodeStar, our team will be updating the application to support what 

modern technology brings. VR technology is the pinnacle of our decade and LodeStar is not 

absent in using this wonder of technology. 

1.5. Interface Documentation Guidelines 

 In this report, all the class names are named in the standard ‘ClassName’ format, where all 

of these names are singular. The variable and method names follow a similar rule as in 

‘variableName’ and ‘methodName()’. In the class description hierarchy, the class name comes 

first, seconded by the attributes of the class, and finally concluded with the methods. The 

detailed outline looks similar to the one presented below: 

Class Name

Description of Class

Attributes

Type of Attribute : Name of Attribute

Methods

NameOfMethod(ParametersOfMethod): Description of Method

LodeStar !4



2. Packages 

 LodeStar’s Low Level system is composed of four parts. First two parts represent the 

client side. These parts are called the View and the Controller. Last two parts are located inside 

the Server subsystem are are called Logic Tier and Data Tier. A high level description of all these 

subsystems can be found in LodeStar’s High Level Design Report[13]. 

 In our project, we used a novel approach to connect the client and the server. Client 

presents the system information to users. It also receives the interaction of users and sends them 

to server to keep the UI (user interface) running. On the other hand, sever side is responsible for 

all non-local data processing and API usage.  

2.1. Client 

 The client side of LodeStar consists of the mobile applications that will be running on iOS 

and Android devices. The client side of the system consists of two packages, View and Controller 

packages. The client side will enable user to authenticate to the system via establishing a 

Firebase connection. After getting the user information, the client will navigate to the Home page 

where user will submit their travel information. When sending or retrieving information from 

LodeStar’s server, the Controller package comes into play so that trip information such as flight 

details or places to see in the travelled location will be requested by the client side. The View 

package will consist of classes that will display these information to users by creating the 

interfaces. 

 Basically, the client side is the user end of the application program. Using the mobile 

application that will be developed for iOS and Android, the user will interact with the system. 

When user enters their Login or Sign Up information in the application, the client will send the 

login request to the server and the user will be logged in to the system. When travel information is 

obtained by client, another request will be sent to server and the client will load the information 

about transport options, weather, flight information, shopping, lounge services, restaurants, 

places to see, living expenses and accommodation. 

 Client subsystem will be implemented using Model-View-Controller[14] design pattern. 

Controller subsystem will be responsible for the connection between client and server, when data 

is sent, controller collects it and when responses are taken for requests, controller collects it. View 

subsystem will be responsible for interface operations. Displaying pages or taken data on the 

screen will be done by the view subsystem. Since all the data of the client will be taken from the 

LodeStar !5



server, implementing a separate Model subsystem will be trivial, therefore we will only use 

Controller and View subsystems in the client side. 

2.1.1. View 

 The view side of our system will consist of user interfaces that the user will encounter 

while using our application. The purpose of the view is to present the user with a friendly UI so 

that he/she will be better able to communicate with the application. For each view, there exists a 

controller to provide an interaction between client and server.  

LodeStar !6

RestaurantsActivity

ShoppingActivityLivingExpensesAct.

AccommodationAct.GetSIMCardActivity LoungeServicesAct.

HomeActivity

LaunchPage

QRCodeActivity

SignUpActivity LogInActivity

TripActivity HistoryFragment

PlacesToSeeActivity WeatherInfoActivity

TransportActivityVRGamesActivity FlightInfoActivity

CurrencyActivity

View

Figure 1 - View Subsystem



LoginActivity: This class accomplishes the Login related duties of the application. If the user has 

an account he/she will be able to use the methods of this class for authentication. 

SignUpActivity: This class will accomplish the Signing-up related activities of the user. This will 

be the first authentication step the user will need to pass in order to be able able to sign-up for 

the account. 

HomeActivity: This class is the view for main page which will open after user authenticates to 

the application. It will display interfaces for entering flight number so that user may initialize their 

trip page. 

QRCodeActivity: This class is responsible for detecting the Barcode objects, specifically for the 

type in boarding passes, then parses the information and sends to the TripActivity. 

TripActivity: This class is responsible for displaying the Trip page that will show cities in the 

travel and interfaces to related pages. 

TransportActivity: This class is responsible for showing the transportation options with an 

estimated cost with respect to the transportation costs, such as taxi fare rates, for that country 

WeatherInformationActivity: This class is responsible for creating WeatherInformation objects 

for a given city by fetching 5-day forecast of that city from the server. This class is also 

responsible for notifying the adapters so that view can be changed. 

FlightInfoActivity: This class is responsible for displaying flight details taken from server side of 

the system according to flight number. 

ShoppingActivity: This class displays the shopping areas in that location 

CurrencyActivity: This class displays the currency rates between travelled countries. 

RestaurantsActivity: This class displays the top quality restaurants in that location 

LivingExpensesActivity: This class is responsible for displaying living expenses by giving most 

common used things as examples. 

PlacesToSeeActivity: This class is responsible for fetching the top places to visit in the specified 

location 

AccommodationActivity: This class is for displaying accommodation information taken from 

the server. 

HistoryFragment: This class is responsible for displaying user history of user’s trips. 

FavoritesFragment: This class is responsible for displaying the user favorites. 

VRGamesActivity: This class displays the VR Game/s and allow users to choose a game 

GetSIMCardActivity: This class displays instructions on how to get a SIM card on the arrival 

airport. 

LodeStar !7



2.1.2. Controller 

 Controller package is responsible for the information transfer between server and client 

side. These classes are associated with their respective view (activity) class to get information for 

them from server side. This is why the diagram looks highly similar. 

LodeStar !8

RestaurantsController

ShoppingControllerLivingExpensesCont.

AccommodationCont.GetSIMCardController LoungeServicesCont.

HomeController

LaunchAction

QRCodeController

SignUpController LogInController

TripController HistoryFragment

PlacesToSeeController WeatherInfoController

TransportControllerVRGamesController FlightInfoController

CurrencyController

Controller

Figure 2 - Controller Subsystem



HomeController: This class is responsible for the controller function related with HomeActivity 

class, mainly for checking the validity of entered flight information. 

HistoryController: This class is for getting the user history from server for logged in user in the 

client. 

FavoritesController: This class is for getting the user favorites information from server for user. 

UserController: This class is responsible of the controller activity elated with UserActivity class, 

like user preferred settings for the client side. 

TransportController: This class is the controller associated with TransportActivity class, for 

getting transport information from server side. 

FlightDetailsController: This class is the controller associated with FlightInfoActivity and 

TripActivity, for obtaining flight details from server. 

PlacesController: This class is the controller for PlacesActivity class, for getting the information 

of nearby places to see from server side. 

CurrencyController: This class the controller class for getting currency rates from the server, 

related with CurrencyActivity page. 

ShoppingController: This class is the controller associated with ShoppingActivity class, for 

getting shopping information from server. 

RestaurantController: This class is the controller associated with RestaurantActivity class, for 

getting shopping information from server. 

AccommodationController: This class is the controller associated with AccommodationActivity 

class, for getting accommodation information from server. 

LivingExpensesController: This class is the controller associated with LivingExpensesActivity 

class, for getting living expenses data from server. 

GetSIMCardController: This class is the controller associated with GetSIMCardActivity, for 

displaying instructions on how to get a SIM card on the arrival airport. 

LodeStar !9



2.2. Server 
  

 This part of the application is where all non-local data is processed. Examples of this data 

would be flight information, weather, currency exchange information and areas of interests. 

Moreover, the server part will store and process user specific data such as Trip Logs, History and 

Favorites. Adding on, the server is responsible for API interactions to collect and process data 

from different platforms such as FlightAware[15], Google, Foursquare[16], Numbeo[17] and 

OpenWeather[18]. The server gathers this data on demand. 

 The interaction with the server starts when a user logs in. However, the major part starts 

when the user wants to scan a boarding pass. In this case,  the server will start by fetching all the 

flight details. Then, it will analyze the flight to see which services are available. According to this 

data, the user will be presented with LodeStar’s available services in the Trip Page. 

 Server has two layers. Logic Tier and Data Tier. Logic Tier is where all user interaction is 

handled. Logic Tier interacts with the client in a request/response manner.  Every time a user 

wants to access a service of LodeStar, Logic Tier will handle the request and generate the 

appropriate ate response for the user. Data Tier includes a Database Management Subsystem. 

This subsystem handles user data, such as a user’s preferences, favorites and trip logs. Basically, 

this database is where all the persistent objects are stored. 

 Since LodeStar will be relying on web micro-services, the server is a very crucial part of 

the project. The server will play a major role starting with just a simple login from a user. Almost 

every action taken by the user will require a communication with the server. The server will 

contain usernames and corresponding preferences, reviews, trip logs and favorites. Furthermore, 

the server is responsible for fetching required data such as flight information, weather, shopping, 

nearby attractions and transportation details. 

LodeStar !10



2.2.1. Logic Tier 

 This layer is responsible for all major operations of the system. The part of the server will 

communicate with many different APIs to service LodeStar’s trip page. When the client sends a 

request, the DockerEngine will parse the request and transmit the request to the appropriate 

micro-service. 

DockerEngine: this class is provided by Docker libraries. It encapsulates other classes and 

manages them during runtime. If one of the micro-services classes fail, it restarts the service and 

does some error logging. 

LodeStar !11

Figure 3 - Logic Tier Subsystem 

Vectorized Version Available on Our Site at http://lodestarapp.com/files/ciri.pdf

FireBaseManager

 + tryLogin(username: String, password: String) : boolean
 + registerUser(username: String, email: String, password: String) : boolean
 + getUserSet(UUID…) : Set<String>
 + getUser(userName: String) : String
 + findUserByPublicKey(key: UUID) : String
 + findUserByToken(token: String): Date
 + getters and setters()
 + toString()

 - uuid : UUID
 - email : String
 - public key : String
 - private token : String
 - register date: Date
 - firstName : String
 - lastName: String

AccountManager
 - facebookAccessToken : String
 - googleAccessToken : String
 + setFacebookToken(clientID : String, apiKey : String) : boolean
 + setGoogleToken(clientID : String, apiKey : String) : boolean
 + getFacebookAccessToken() : String
 + getGoogleAccessToken() : String

TripManager
 - tripOrigin : String
 - tripDestination : String
 - tripDate : Date
 - otherData : TripData
 + gatherAvailableServices(airportCode : String) : List<Service>
 + switchCities() : TripData
 +startInfoActivity(view: Controller)
 + getters and setters()
 + toString()

DockerEngine
 - LodeStarVRImagery : DockerImage
 - LodeStarWeather : DockerImage
 - LodeStarVenueExplorer : DockerImage
 - LodeStarFlightStatus : DockerImage
 - LodeStarLivingExpenses : DockerImage
 + startImage(image: DockerImage)
 + stopImage(image: DockerImage)
 + startImages()
 + stopImages()
 + getRunningInstances()

LodeStarVRImagery
 - imageQuality : int
 - direction : double
 - fieldOfView : double
 + getStreetViewImage(quality : int, longitude : float, latitude : float) : Image

LodeStarCurrency
 - localCurrencyCode : String
 - foreignCurrencyCode : String
 - localOverForeignCurrency : double
 - foreignOverLocalCurrency : double
 + getCurrencyInfo(foreignCurrencyCode : String, localCurrencyCode : 
String) : JSONObject

LodeStarTransportationInformation
 - origin : Coordinate
 - destination : Coordinate

 + getAvailableTransportationOptions(origin: 
Coordinate, destination: Coordinate)

LodeStarVenueExplorer
 - int availableVenues : int
 + getNearbyVenues(category : String, longitude : float, latitude : float) : Venue
 + getReview(venue : Venue)
 + getStreetAddress(venue : Venue) : String
 + getVenueCoordinates(venue: Venue) : Coordinate Tuple

LodeStarWeather
 - units : String
 + getWeatherForecast(city : String, units: String) : List<JSONObject>

LodeStarFlightStatus
 - originAirportCode : String
 - destinationAirprtCode : String
 - flightNumber : String
 + getFlightDetails(originAirportCode : String, destinationAirportCode: 
String, flightNo : String) : JSONObject

UserDataManager
 + getUserTripLogs(user : User) : List<TripLog>
 + getUserHistory(user : User) : List<TripLocation>
 + getUserPreferences(user : User) : JSONObject
 + getUserFavorites(user: User) : List<Favorite>
 + getUserReviews(user : User) : List<Review>
 + getters and setters()
 + toString()

ReviewHandler
 + getPlaceReviews(venue : Venue) : List<Review>
 + getUsersReview(user : User) : List<TripLocation>
 + addRevivew(venue: Venue)
 + deleteReivew(venue: Venue, reviewID: UUID)

LodeStarLivingExpenses
 - localMeal : double
 - bigMac : double
 - oneLiterCoke : double
 - averageHotel : double
 -others : Map<String, Double>
 + getLivingExpenses(city : String)

Logic Tier



UserDataManager: is responsible for managing user preferences, trip logs, favorites etc. 

Communicates with the Data Tier to save the user’s preferences. The client will send a request to 

this class, and the class will call the necessary functions to give the appropriate response to the 

client. 

ReviewHandler: is responsible for handing review requests. When a user wants to write a review, 

the client will communicate with this part of the server. 

AccountManager: LodeStar will keep user preferences in the server. This class will 

communicate with the client when the user triggers an operation that requires account 

authentication. 

FireBaseManager: This class will be used to communicate with the FireBase database. This 

database will hold user information and store them in a JSONObject format. 

TripManager: is responsible for responding the user’s requests while the user is on the Trip Page 

of LodeStar. This class will call all necessary functions of the following classes. 

LodeStarVRImagery for the VR functionality, we will be requiring Google’s Street View APIs. 

This class will be communicating with Google’s APIs to retrieve 360 images. When the user 

wants to see the nearby locations in VR, 360 images for the place will be needed. This class will 

send requests to Google 360 StreetView to get available images for the location. 

LodeStarVenueExplorer: to get available attractions in the city, LodeStar will be relying in 

FourSquare APIs. The API will retrieve information about nearby places, their addresses and 

reviews. This class will recognize and sort this data before sending it to the client. 

LodeStarFlightStatus When the user scans a boarding pass to get into the Trip Page,  this class 

will send a request to the FlightAwareAPIs to get any available flight data. This data will include 

almost everything that a user would want to see.  Even information about if the flight will have wi-

fi or not. 

LodeStarTransportationInformation: This class will help the user to create a route given the 

budget options. This class will take the budget and the location to find possible ways to get from 

point A to point B. This data will be gathered from Google’s APIs. 

LodeStarLivingExpenses: This class will gather living expense costs. This data will be provided 

by Numbeo[17] 

LodeStarCurrency: when the user wants to see exchange rates,  this will send requests to 

OpenExchangeRate[19] API and retrieve currency exchange information 

LodeStarWeather: this class will send requests to OpenWeather APIs to get weather data for 

specified city. [18]  

LodeStar !12



2.2.2. Data Tier 

This layer manages interactions with the database. It will communicate with the Logic Tier to 

service requested data. 

Trip: this class is responsible for caching data for trips. For example, LodeStar will not send many 

many requests for getting the weather information for the same day. Additionally, every airport will 

have different services. LodeStar will store available services for the  

LodeStarVRImagery:  This class will manage cached 360 images for airports. 

LodeStarWeather: this class will manage cached weather information for previously requested 

cities. 

Context: this class will manage airport services. It will store which airports provide which 

services. We will use this data to display the services available on the Trip Page. 

LodeStarFlightStatus: Since we need to reduce the number of requests to FlightAware API, we 

need to cache flight information responses. This class will be responsible for storing flight 

informations. 

User: this class manages user specific data. It is responsible for handling Trip Logs, Preferences, 

Favorites and Reviews 

LodeStar !13

Figure 4 - Data Tier Subsystem

User
 - uuid : UUID
 - username : String
 - email : String
 - registrationDate : Date
 - firstName : String
 - lastName : String

*

*

*

1

Review
 - uuid : UUID
 - content : String
 - stars : int
 - date : Date

TripLog
 - uuid : UUID
 - content : String
 - date : Date

Context
 - context : JSONObject

Favorite
 - uuid : UUID
 - content : String
 - date : Date

Preferences
 - context : Preference

Trip
 + id : UUID 
 + tripOrigin : String
 + tripDestination : String
 + tripDate : Date
 + otherData : TripData

LodeStarVRImagery
 - imageQuality : int
 - direction : double
 - fieldOfView : double

LodeStarCurrency
 - localCurrencyCode : String
 - foreignCurrencyCode : String
 - localOverForeignCurrency : double
 - foreignOverLocalCurrency : double

LodeStarTransportationInformation
 - origin : Coordinate
 - destination : Coordinate

LodeStarWeather
 - date : Date
 - city : String

LodeStarFlightStatus
 - originAirportCode : String
 - destinationAirprtCode : String
 - flightNumber : String

LodeStarLivingExpenses
 - localMeal : double
 - bigMac : double
 - oneLiterCoke : double
 - averageHotel : double
 -others : Map<String, Double>

Data Management Subsystem



TripLog: the user will be able to share their trip experiences in a short paragraph. They will also 

have the ability to showcase these short texts on their profile pages. This class will manage the 

storage of Trip Logs 

Preferences: this class will be responsible for the storage of user preferences in the database 

Favorite: the user will be able to add other trip logs and places to their favorites so they can see 

them later. This class will be responsible for the storage of user favorites in the database 

Review: the user will be able to review places they have visited. This class will be responsible for 

the storage of user reviews in the database 

LodeStar !14



3. Class Interfaces 

 In this section of the report, signatures, properties and methods of the classes will be 

provided. Furthermore, their specific duties will be discussed in detail. 

  

3.1. Client 

 The subsystems in this section are dedicated for the mobile applications. Listed class 

names and function names are subject to change throughout the development lifecycle of the 

project. 

3.1.1. View 

class SignUpActivity extends AppCompatActivity

This class will accomplish the Signing-up related activities of the user. This will be the first authentication 
step the user will need to pass in order to be able able to sign-up for the account.

Attributes

private EditText emailField

private EditText usernameField

private EditText passwordField

private EditText reTypeField

Methods

public int tryToRegister() This function tries to register the user. If the user has provided wrong 
credentials (e.g. if a proper e-mail is not entered), it displays an error 
message saying that the user could not be registered and returns -1. 
If the user entered the credentials correctly, the functions returns 1. 

public void txtSignInXML(View v) This function is called whenever the text “Already Signed Up?” is 
clicked. It redirects the user to LoginActivity so that the user can 
login.

public void 
registerButtonXML(View v)

This function is called whenever the register button is clicked. It 
takes the values in user credentials and puts them into our firebase 
database.

public boolean reTypeCheck() Checks if the initial entered password matches the reTypeField to 
avoid any ambuguities in password creation.

public void onCreate() Initializes the variables and sets up the page

LodeStar !15



class LogOutActivity extends AppCompatActivity

This class is responsible from ensuring a secure logout from the system for a user. After a successful 
logout, the account of the user becomes inaccessible until after a new login.

Attributes

private static final String TAG

private static final int RC_SIGN_IN

private Button signInWithEmail

private SignInButton signOutButton

Methods

public void onCreate(): This function initializes the variables and sets up the page for use.

public void onClick(View v): Whenever there is an onclick event, this method is called to redirect 
user to the appropiate place.

public void signIn(): This function ensures the account with the provided credentials 
safely logs out of the system.

public void 
onConnectionFailed(ConnectionRe
sult connectionResult):

Checks if the connection to the database is established or not. 
Since the application is using the Firebase database, it is important 
that the user has a reliable internet connection in order to be able to 
safely sign out.

class LoginActivity extends AppCompatActivity

This class accomplishes the Login related duties of the application. If the user has an account he/she will 
be able to use the methods of this class for authentication.

Attributes

private static final String TAG

private static final int RC_SIGN_IN

private Button signInWithEmail

private SignInButton logInButton

Methods

public void onCreate(): This function initializes the variables and sets up the page for use.

public void onClick(View v): Whenever there is an onclick event, this method is called to redirect 
user to the appropiate place.

public void signIn(): This function is called whenever the register button is clicked. It 
takes the values in user credentials and puts them into our firebase 
database.

public void 
onConnectionFailed(ConnectionRe
sult connectionResult):

Checks if the connection to the database is established or not. 
Since the application is using the Firebase database, it is important 
that the user has a reliable internet connection in order to be able to 
successfully sign in.

LodeStar !16



class RegisterViaEmailActivity extends AppCompatActivity

This class is responsible for creating a new account for the user granted the email provided is unique and 
the password is adequately safe.

Attributes

private static final String TAG

private String email

private String password

private String accountID

Methods

public void onCreate() This function initializes the variables and sets up the page for use.

public void onClick(View v) Whenever there is an onclick event, this method is called to redirect 
user to the appropiate place.

public void checkEmail(String 
email)

This function checks whether the entered email by the user is 
already being used.

public void checkPassword(String 
password)

This function checks whether the entered password by the user 
contains a number, a capital letter, contains at least 8 characters, 
and contains nothing other than English characters and numbers.

public void createAccount(String 
email, String password)

After making sure the email is unique and the password is safe to 
use, this method creates a new account for the user and issues a 
unique ID to it.

class ForgotPasswordActivity extends AppCompatActivity

This class is called when the user forgets his/her password. In that case user is asked to provide the e-
mail he/she used during sign up process. An auto generated password is sent to the user’s e-mail.

Attributes

private EditText emailField

private Button forgotPasswordButton

Methods

public void onCreate() This function initializes the variables and sets up the page for use.

public void 
forgotPasswordClick(View v):

Whenever the use presses the forgot password button, this method 
validates if there exists a user with the given e-mailField in the 
database. If there exists such a field, sends a auto generated 
password to the user’s email.

LodeStar !17



class WeatherInformation

This class is a model class for the 5-day forecast of a given city. This class is used when the 5-day 
forecast data is fetched from the server.

Attributes

private String date

private String description

private double feelsLikeTemperature

private double humidity

Methods

Getters for attributes

class WeatherInformationAdapter extends RecyclerView.Adapter<RecyclerView.ViewHolder>

This class is responsible for taking a list of WeatherInformation objects from the 
WeatherInformationActivity and showing them in CardView type

Attributes

private List<WeatherInformation> weatherInformationList

private static final int TODAY

private static final int OTHER

Methods

public RecyclerView.ViewHolder

onCreateViewHolder(ViewGroup 
parent, int viewType)

This function binds the view to it’s respective CardView

public void

onBindViewHolder(RecyclerView.Vi
ewHolder holder, int position)

This function binds the elements in the CardView with their 
respective information

public int getItemCount() This function returns the number of WeatherInformation objects that 
are taken from the server

public int getItemViewType(int 
position)

This function allows to distinguish today’s weather with the other 
day’s weather

LodeStar !18



class FlightInfo

This class is responsible for getting flight information using the flight number. Sends back the requested 
flight information in JSONObject format.

Attributes

private String dest

private String orig

private String dest_gate

private String orig_gate

private String orig_airport

private String dest_airport

private String orig_date

private String dest_date

private String orig_localtime

private String dest_localtime

private int distance

private int speed

private String aircraft

private String link

Methods

Get methods for attributes

class FlightInfoActivity

This class is responsible for displaying flight details taken from server side of the system according to 
flight number.

Attributes

FlightInfo flightInfo

Methods

public void tripStart() Navigates the view back to Trip page

LodeStar !19



class HomeActivity

This class is the view for main page which will open after user authenticates to the application. It will 
display interfaces for entering flight number so that user may initialize their trip page.

Methods

public void readQRCode() Navigates the view back to Trip page

public void getFlightNo() Gets the flight no entered by user in the input area

pulic void openCardboard() Opens the related website when user taps its button

class LivingExpensesActivity 

This view class displays the living expenses information taken from server for the selected city 

Methods

public void livingExpenses() Initializes the LivingExpenses page

class QRCodeInfo

This class is used in storing the informations from the detected Barcode

Attributes

private String from

private String to

private String flightCode

Methods

Getters and setters for the attributes

LodeStar !20



class QRCodeActivity 

This class is responsible for detecting the Barcode objects, specifically for the type in boarding passes, 
then parses the information and sends to the TripActivity.

Attributes

private CameraSource cameraSource

private BarcodeDetector barcodeDetector

private SurfaceView surfaceView

private final int REQUEST_CAMERA

private QRCodeInfo qrCodeInfo

Methods

protected void onCreate(Bundle 
savedInstanceState)

This function runs on page initialization. Parses UI XML just before 
rendering the view

private void 
checkForCameraPermission()

This function dynamically checks permission for camera usage, if 
the permission is not given, it requests the permission from the user 
dynamically

private void openCamera() This function creates and binds the BarcodeDetector and 
CameraSource objects and activates the camera

public void 
surfaceCreated(SurfaceHolder 
surfaceHolder)

This function is one of the callback methods for the SurfaceView 
object, at runtime it opens the camera

public void 
surfaceDestroyed(SurfaceHolder 
surfaceHolder)

This function stops the camera when user goes back from this 
activity

public void 
receiveDetections(Detector.Detecti
ons<Barcode> detections)

This function detects the Barcode object by using the camera, 
parses the returned information from the Barcode object and passes 
it to the TripActivity

public void returnToTripActivity() This function creates an Intent object to go to the TripActivity while 
taking the information for the Barcode object

private void 
requestPermissionForCamera()

This function requests permission from user for camera usage at 
runtime.

public void 
onRequestPermissionsResult(int 
requestCode, @NonNull String 
permissions[], @NonNull int[] 
grantResults)

This function gets the result from the permission and either opens 
the camera to detect the barcode or goes back to the previous 
activity depending on the result

LodeStar !21



class TripActivity 

This class is responsible for displaying the Trip page that will show cities in the travel and interfaces to 
related pages.

Attributes

public ViewFlipper view_flipper

public View firstView

public View secondView

private FlightInfo flightInfo

Methods

public void weatherStart(View 
view)

Navigates to weather page

public void flightInfoStart(View 
view)

Navigates to flight details page

public void currencyStart(View 
view)

Navigates to flight details page

public void livingStart(View view) Navigates to living expenses page

public void transportStart(View 
view)

Navigates to transportation page

public void shoppingStart(View 
view)

Navigates to shopping page

public void restaurantsStart(View 
view)

Navigates to restaurants page

public void placesStart(View view) Navigates to places to see page

public void 
accomodationStart(View view)

Navigates to accommodation page

private void updateSizeInfo() Updates button sizes dynamically to fit the size of the phone upon 
page load

LodeStar !22



class WeatherInformationActivity

This class is responsible for creating WeatherInformation objects for a given city by fetching 5-day 
forecast of that city from the server. This class is also responsible for notifying the adapters so that view 
can be changed. 

Attributes

private RecyclerView mRecyclerView

private RecyclerView.Adapter mAdapter

private RecyclerView.LayoutManager mLayoutManager

private List<WeatherInformation> weatherInformationList

Methods

protected void onCreate(Bundle 
savedInstanceState)

This function runs on page initialization. Parses UI XML just before 
rendering the view

public void 
sendRequestToServer(String 
requestFromTheUrl)


This function sends request to server with a city name parameter to 
fetch the 5-day forecast data of that city from the server

public void 
onResponse(JSONArray response)


This function stores the servers response in a JSONArray

private void 
parseTheJSONResponse(JSONArr
ay weatherInformationServer)


This function takes the response from the server, parses the 
information and creates the respective WeatherInformation objects

class CurrencyActivity 

This class displays the currency rates between travelled countries.

Methods

public void tripStart() Navigates the view back to Trip page

LodeStar !23



3.1.2. Controller 

 Class interfaces for controller classes are listed below. For each of the following controller 

classes, you can find a short description and the related methods listed. All the methods available 

have their parameters and descriptions available as well. 

HomeController

This class is responsible for the controller functions related with HomeActivity class, basically for 
checking the validity of entered flight information.

Methods

public boolean checkFlight(String) Checks the validity of the entered flight info of user.

HistoryController

This class is for getting the user history from server for logged in user in the client.

Methods

public List<String> getHistory(int) Receives user history information details from server side in String 
format.

FavoritesController

This class is for getting the user history from server for logged in user in the client, associated with 
FavoritesFragment class.

Methods

public List<String> 
getFavorites(int)

Gets user favorite details from server side in String format.

PlacesController

This class is responsible of the controller activity elated with UserActivity class, like user preferred settings 
for the client side.

Methods

public JSONObject 
getPreferences(String)

Gets user’s preferred settings from server side.

public List<String> getComments Gets user comments from last trip to show on User page.

LodeStar !24



TransportController

This class is the controller associated with TransportActivity class, for getting transport information from 
server side.

Methods

public JSONObject 
getTransportOptions(String)

Gets transport options near the airport in JSON format.

FlightDetailsController

This class is the controller associated with FlightInfoActivity and TripActivity, for obtaining flight details 
from server.

Methods

public FlightInfo 
getFlightInfo(String)

Gets flight details from server side for flight no

PlacesController

This class is the controller for PlacesActivity class, for getting the information of nearby places to see from 
server side.

Methods

public List<String> 
getPlaces(String)

Gets places to see in the travelled city in string format

CurrencyController

This class the controller class for getting currency rates from the server, related with CurrencyActivity 
page.

Methods

public String getCurrency(String) Gets currency information in String format

ShoppingController

This class is the controller associated with ShoppingActivity class, for getting shopping information from 
server.

Methods

public List<String> 
getShops(String)

Gets shops near airport for entered criteria or item

LodeStar !25



RestaurantController

This class is the controller associated with RestaurantActivity class, for getting shopping information from 
server.

Methods

public List<String> 
getRestaurants(String)

Gets restaurants in the city for entered criteria

AccommodationController

This class is the controller associated with AccommodationActivity class, for getting accommodation 
information from server.

Methods

public String 
getAccomodaiton(String)

Gets accommodation details for entered criteria

LivingExpensesController

This class is the controller associated with LivingExpensesActivity class, for getting living expenses data 
from server.

Methods

public JSONObject 
getLivingExpense(String)

Gets living expenses for entered city from server

LodeStar !26



3.2. Server 

 The subsystems in this section are dedicated for the Server. Listed class names and 

function names are subject to change throughout the development lifecycle of the project. 

3.2.1. Logic Tier 

class FireBaseManager

This class is responsible for managing request/response tuples with Firebase. Firebase will be required for 
storing and manipulating user data

Attributes

private UUID uuid

private String email

private String publicKey

private String privateToken

private Date registerDate

private String firstName

private String lastName

Methods

public tryLogin(String username, 
String password) : boolean

This function sends a login request to Firebase. If the credentials 
provided for the login are correct, the login is successful.

public registerUser(String 
username, String email, String 
password) : boolean

This function sends user credentials to Firebase for a new user 
creation. If the credentials have no problems, (matching id, short 
password) a new user gets created.

public getUserSet(UUID… uuidList) 
: Set<String>

This function returns a set of users with the specified ids.

public getUser(String userName) : 
String


This function returns the details for a single user

public findUserByPublicKey(UUID 
key) : String

This function returns the details for a single user using their public 
key

public findUserByToken(String 
token) : String

This function returns the details for a single user using their token

public toString() :String This function wraps the class into a string and returns it

getters and setters for attributes Required to change or retrieve information during runtime

LodeStar !27



class AccountManager

This class is responsible for managing account credentials such as tokens and access protocols

Attributes

private String facebookAccessToken

private String googleAccessToken

Methods

public setFacebookToken(String 
clientID, String apiKey) : boolean

Sets the token received fro Facebook login to be the current token

public setGoogleToken(String 
clientID, String apiKey)

Sets the token received fro Google login to be the current token

public 
getFacebookAccessToken() : String

Gets the Facebook token for operations which require Facebook 
authorization

public get GoogleAccessToken() : 
String


Gets the Google token for operations which require Facebook 
authorization

class ReviewHandler

This class is responsible for handling user reviews. The users may be able to write reviews to visited 
places.

Methods

public getPlaceReviews(Venue 
venue) : List<Review>

Gathers the reviews for the specified place from Foursqaure

public getUsersReview(User user) : 
List<TripLocation>

Gathers the reviews written by the specified LodeStar user

public addReview(Venue venue) Adds a review written by a LodeStar user to the specified venue

public deleteReview(Venue venue, 
UUID reviewID)

Deletes a review written by a LodeStar user to the specified venue

class UserDataManager

This class is responsible for managing and manipulating user data.

Methods

public getUserTripLogs(User user) : 
List<TripLog>

Returns the Trip Logs (kind of a tweet in LodeStar) of a specified 
LodeStar user

public getUserHistory(User user) : 
List<TripLocation>

Returns the trip history of a specified LodeStar user

public getUserPreferences(User 
user) : JSONObject

Returns the preferences of a specified LodeStar user

public getUserFavorites(User 
user) : List<Favorite>

Returns the favorite places of a specified LodeStar user

LodeStar !28



public getUserReviews(User user) : 
List<Review>

Returns the list of reviews of a specified LodeStar user

public toString() : String This function wraps the class into a string and returns it

getters and setters for attributes Required to change or retrieve information during runtime

class UserDataManager

class TripManager

This class is responsible for getting data for the trip. This service starts by exploring the available services 
for the specified airport.

Attributes

private String tripOrigin

private String tripDestination

private Date tripDate

private TripData otherData

Methods

public 
gatherAvailableServices(String 
airportCode) : List<Service>

Explores the services offered by the airport. For example, some 
airports offer premium lounge services while others don’t.

public switchCities() : TripData Switches cities to explore a different airport in a different city

public startInfoActivity(Controller 
view) 

Starts the LodeStar service. (Currency, Weather, FlightInfo)

public toString() : String This function wraps the class into a string and returns it

getters and setters for attributes Required to change or retrieve information during runtime

LodeStar !29



class DockerEngine

This class is responsible for managing the docker container. It will start and stop Docker Images

Attributes

private DockerImage LodeStarVRImagery

private DockerImage LodeStarWeather

private DockerImage LodeStarVenueExplorer

private DockerImage LodeStarFlightStatus

private DockerImage LodeStarLivingExpenses

Methods

public startImage(DockerImage 
image)

Starts the  specified DockerImage

public stopImage(DockerImage 
image)

Stops the specified DockerImage

public startImages() Starts all DockerImages in the container

public stopImages() Stops all DockerImages in the container

public getRunningInstances() : 
List<DockerImage>

Returns a list of all running instances in the Docker container

class LodeStarVenueExplorer

This class is responsible for retrieving a list of venues near the specified location

Attributes

private int availableVenues

Methods

public getNearbyVenues(String 
category, float longitude, float 
latitude) : Venue

Retrieves a list of venues near the specified coordinates

public getReview(Venue venue) : 
Review

Retrieves a list of reviews of the venue

public getStreetAddress(Venue 
venue) : String

Retrieves the street address of the venue

public getVenueCoordinates(Venue 
venue) : Coordinate

Retrieves the location of the venue

LodeStar !30



class LodeStarWeather

This class is responsible for retrieving weather information for the specified city on the specified date

Attributes

private String units

Methods

public getWeatherForecast(String 
city, String units) : 
List<JSONObject>

Retrieves the weather information from OpenWeatherMapAPI.

class LodeStarVRImagery

This class is responsible for getting VR images. The direction and field of view is required for viewing 360 
images in virtual reality mode

Attributes

private int imageQuality

private double direction

private double fieldOfView

Methods

public getStreetViewImage(int 
quality, float longitude, float 
latitude) : Image

Downloads the StreetView image to LodeStar server

class LodeStarCurrency

This class is responsible for retrieving currency information and returning it to the client side

Attributes

private String localCurrencyCode

private String foreignCurrencyCode

private double localOverForeignCurrency

private double foreignOverLocalCurrency

Methods

public getCurrencyInfo(String 
foreignCurrencyCode, String 
localCurrencyCode) : JSONObject

Retrieves detailed current information for the specified currencies

LodeStar !31



class LodeStarFlightStatus

This class is responsible for getting any flight information that could be gathered by only using the flight 
number

Attributes

private String originAirportCode

private String destinationAirportCode

private String flightNumber

Methods

public getFlightDetails(String 
originAirportCode, String 
destinationAirportCode) : 
JSONObject

Retrieves flight information from FlightAware API.

class  LodeStarLivingExpenses

This class is responsible for getting approximate living expense cost in a city from the Number statistics 
API.

Attributes

private double localMeal

private double bigMac

private double oneLiterCoke

private double averageHotel

private Map<String, Double> others

Methods

public getLivingExpenses(String 
city) : JSONObject

Returns a list of living expenses. The list consists of widely known 
items such as a Big Mac Meal from McDonalds.

class  LodeStarTransportationInformation

This class is responsible for getting available transport options for the airport’s location

Attributes

private Coordinate origin

private Coordinate destination

Methods

public 
getAvailableTransportOptions(Coor
dinate origin, Coordinate 
destination) : JSONObject

Returns all transport options such as taxi, public transport, train etc.

LodeStar !32



3.2.2. Data Tier 
 
class User

This class is used to store user information

Attributes

private UUID uuid

private String username

private String email

private String registrationDate

private firstName

private lastName

class Review

This class is used to store user reviews. Users may be able to review places they visited in trips.

Attributes

private UUID from

private String content

private int stars

private Date date

class TripLog

This class is used to store trip logs. These are short summaries from user’s trips. Just like tweets

Attributes

private UUID uuid

private String content

private Date date

LodeStar !33



Preferences

This class is used to store user preferences. This class contains many attributes and are subject to 
change. Assume that context refers to the preferences that the user will be able to change.

Attributes

private Preference context

class Favorite

This class is used to store user favorites. Places, trips, etc.

Attributes

private UUID id

private String content

private Date date

class  Trip

This class is used to store all related trip information.

Attributes

private UUID id

private String tripOrigin

private String tripDestination

private Date tripDate

private TripData otherData

class Context

This class is used to store other Trip related data that may be added later during project development 
cycle

Attributes

private JSONObject context

LodeStar !34



class LodeStarWeather

This class is used store weather information for the specified city on the specified date

Attributes

private Date date

private String city

class LodeStarFlightStatus

This class is used to store any flight information that could be gathered by only using the flight number

Attributes

private String originAirportCode

private String destinationAirportCode

private String flightNumber

class LodeStarTransportationInformation

This class is used to store transportation information. This information is gathered from the Google Maps 
API. Can list options for public transport, train, walking and taxi.

Attributes

private Coordinate origin

private Coordinate destination

class LodeStarLivingExpenses

This class is used to store living expenses for the specified city. Data is required for the living expenses 
page.

Attributes

private double localMeal

private double bigMac

private double oneLiterCoke

private double averageHotel

private Map<String, Double> others

LodeStar !35



class LodeStarVRImagery

This class is used to store VR images. The direction and field of view is required for viewing 360 images in 
virtual reality mode

Attributes

private int imageQuality

private double direction

private double fieldOfView

class LodeStarCurrency

This class is used to store currency values for different currencies used in different countries

Attributes

private String localCurrencyCode

private String foreignCurrencyCode

private double localOverForeignCurrency

private double foreignOverLocalCurrency

LodeStar !36



4. Glossary 

Activity: In android an activity is a entry point for a user’s interaction with the application. 

Recycler View: Recycler View is “a container for displaying large data sets that can be scrolled 

very efficiently by maintaining a limited number of views”[1] 

Our server runs on a Host OS, which runs on Ubuntu. Above this layer, we are planning to 

integrate the Docker Engine in order to manage our server side applications. Docker Engine 

works with container images, which according to the definition in Docker’s website “are an 

abstraction at the app layer that packages code and dependencies together”[10]. There can be 

multiple containers in a host OS, and for that reason, in our server, we are planning to have a 

container/s depending on the traffic to run our server side applications which are in Node JS. The 

server will still be similar in terms of design. * 

*The code presented in this report is subject to change. As new technologies are being developed, the team may adopt a newer 

technology which could be beneficial for the future development of this project. Moreover, the team may change the some of the 

code design if any obstacles are encountered during development. 

LodeStar !37



5. References 

[1] Android Developers. Activities. Android Developers. [Online]. developer.android.com/guide/

components/activities/index.html. [Accessed: 10-Feb-2018]. 

[2] Fant J.S., Pettit R.G. (2008) Cost-Performance Tradeoff for Embedded Systems. In: 

Brinkschulte U., Givargis T., Russo S. (eds) Software Technologies for Embedded and Ubiquitous 

Systems. SEUS 2008. Lecture Notes in Computer Science, vol 5287. Springer, Berlin, Heidelberg 

[3] Parcell J. 2013. Functionality and Usability Testing Resources. [Online]. Available: https://

www.digitalgov.gov/2013/05/25/functionality-and-usability-testing-resources. [Accessed: 9-

Feb-2018]. 

[4] Rasmussen, G.T. 2005. Implementing Information Security: Risks vs Cost. [Online]. Available: 

http://www.gideonrasmussen.com/article-07.html. [Accessed: 9-Feb-2018]. 

[5] Suh, E. 2017. Space-Time Tradeoffs and Efficiency. [Online]. Available: https://

www.cprogramming.com/tutorial/computersciencetheory/space-time-tradeoff.html. [Accessed: 

9-Feb-2018]. 

[6] IBM, "UML - Basics," June 2003. [Online]. Available: http://www.ibm.com/developerworks/

rational/library/769.html. 

[7]  IEEE, "IEEE Citation Reference," September 2009. [Online]. Available: https://m.ieee.org/

documents/ieeecitationref.pdf. [Accessed 9-Feb-2018].  

[8] Firebase. [Online]. Available: https://firebase.google.com/. [Accessed: 11-Feb-2018]. 

[9] N. Foundation, Node.js. [Online]. Available: https://nodejs.org/en/. [Accessed: 11-Feb-2018]. 

[10] “Docker,” Docker. [Online]. Available: https://www.docker.com/. [Accessed: 11-Feb-2018]. 

[11] Apple Staff. 2006. About Swift. [Online]. Available: https://developer.apple.com/library/

content/documentation/Swift/Conceptual/Swift_Programming_Language/index.html. 

[Accessed: 10-Feb-2018] 

[12] “Unity,” Unity. [Online]. Available: https://unity3d.com/. [Accessed: 11-Feb-2018]. 

[13] CrackerJack, “High Level Design Report,” LodeStar. [Online]. Available: http://

lodestarapp.com/files/evie.pdf. [Accessed: 12-Feb-2018]. 

[14] “Coding Horror,” Understanding Model-View-Controller. [Online]. Available: https://

blog.codinghorror.com/understanding-model-view-controller/. [Accessed: 11-Feb-2018]. 

[15] “Flight Status API / Flight Tracking API / FlightAware API ✈ Commercial Services ✈ 

FlightAware,” FlightAware. [Online]. Available: https://flightaware.com/commercial/ 

flightxml/. [Accessed: 09-Oct-2017]. 

[16] “Food, Nightlife, Entertainment,” FourSquare. [Online]. Available: https:// 

foursquare.com. [Accessed: 05-Nov-2017]. 
LodeStar !38



[17]Cost of Living. [Online]. Available: https://www.numbeo.com/cost-of-living/. [Accessed: 22-

Dec-2017]. 

[16] Our currency data API powers the Internet's most dynamic startups, brands and 

organisations. Exchange Rates API, JSON format, for Developers. [Online]. Available: https://

openexchangerates.org/. [Accessed: 22-Dec-2017]. 

[17] Cost of Living. [Online]. Available: https://www.numbeo.com/cost-of-living/. [Accessed: 22-

Dec-2017]. 

[18] OpenWeatherMap.org. Сurrent weather and forecast. openweathermap. [Online]. Available: 

https://openweathermap.org/. [Accessed: 22-Dec-2017]. 

[19]“Our currency data API powers the Internet's most dynamic startups, brands and 

organisations.,” Exchange Rates API, JSON format, for Developers. [Online]. Available: https://

openexchangerates.org/. [Accessed: 22-Dec-2017]. 

LodeStar !39



[ This page is intentionally left blank ] 

[end of report] 

LodeStar !40


	Introduction
	Design Trade-Offs
	Functionality vs Usability
	Security vs. Cost
	Space vs. Time
	Compatibility vs Extensibility
	Engineering Standards
	Use of New Tools and Technologies
	Life Long Learning
	Interface Documentation Guidelines
	Packages
	Client
	View
	Controller
	Server
	Logic Tier
	Data Tier
	Class Interfaces
	Client
	View
	Controller
	Server
	Logic Tier
	Data Tier
	Glossary
	References

